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A.  Variable PV Penetration  
Historical irradiance data from the NREL National Solar Radiation Database (NSRD) taken from Denver 
International Airport (DIA) on June 21st, 2022.  

Solar Irradiance (W/m^2) Beam Diffuse Total 
10:00am 975 94 1069 
4:00pm 814 84 898 
8:00pm 0 0 0 

B. EV Demand  
EV loads are inserted at the tracts that have the highest median income as well as the highest homeownership 
ratio since this group of people are more likely to own and charge an EV. Therefore, there were ten EV loads 
connected on tracts 102 and 106 (buses 828, 830, 854, 852, 890, 832, 836, and 840). 

C. Impact of EV and PV on Grid Performance 
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1  20 %  10:00am  20%  2906.9  519.6  386.2  1.013  0.866  8  

2  20 %  4:00pm  20 %  2973.8  525.9  401.3  1.001  0.862  11  
3  20 %  8:00pm  20 %  3325.2  558.7  486.1  1  0.844  12  
4  50 %  10:00am  20 %  2256.6  454.4  260.7  1.047  0.892  4  
5  50 %  4:00pm  20 %  2440.8  475.0  291.6  1.042  0.888  4  
6  50 %  8:00pm  20 %  3325.2  558.7  486.1  1  0.844  12  
7  20%  10:00am  50%  4435.0  887.5  799.8  1  0.760  34  
8  20 %  4:00pm  50 %  4495.9  896.0  820.2  1  0.757  34  
9  20 %  8:00pm  50 %  4815.3  940.1  932.0  1  0.741  34  

10  50%  10:00am  50 %  3864.6  808.7  622.5  1  0.789  34  
11  50 %  4:00pm  50 %  4016.7  829.7  667.3  1  0.781  34  

12  50 %  8:00pm  50 %  4815.3  940.1  932.0  1  0.741  34  

13  20%  10:00am  100 %  6358.5  1588.1  1597.5  1  0.621  34  
14  20 %  4:00pm  100 %  6411.2  1598.5  1622.8  1  0.619  34  

15  20 %  8:00pm  100 %  6687.8  1652.6  1759.3  1  0.601  34  

16  50%  10:00am  100 %  5864.6  1491.5  1371.6  1  0.645  34  
17  50 %  4:00pm  100 %  5596.3  1517.3  1429.9  1  0.639  34  
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18  50 %  8:00pm  100 %  6687.8  1652.7  1759.3  1  0.606  34 
 

 

D. Mitigation 

The worst-case scenario from the results is scenario 15 because it has the highest power losses and the 
lowest per-unit voltage. One thing to note is that scenario 15 and scenario 18 have nearly identical results, 
regardless of having different PV penetration levels. Both scenarios are for analysis at 8:00pm, but scenario 15 
has 20% PV penetration while scenario 18 has 50%. These scenarios are so similar regardless of PV penetration 
because the solar irradiance at 8:00pm is zero, in other words, neither scenario is receiving power injection 
from PVs. However, on a different day of the year there could be nonzero irradiance at 8:00pm, and then 
scenario 15 would still be the worst-case since PV penetration is only 20% compared to 50% from scenario 18. 
That being said, the main operational problems with scenario 15 are the low power generation and the high 
constant loads. High constant loads, due to high EV penetration, cause large voltage drops and subsequently 
an undervoltage system, as seen by the low per-unit voltage. In addition, the zero irradiance at 8:00pm means 
there is no PV power injection at the nodes, which makes power losses high due to power being lost in 
transmission lines from substation to nodes. Below are two proposed solutions and a discussion of their 
implementation:  

Battery Deployment Solution 

The issue of high constant loads from EV charging could be addressed through the deployment 
of large-scale battery storage. While potentially expensive, this solution offers benefits including 
frequency response, load balancing, and voltage support. The deployment of two batteries into the 
system during scenario 15 led to an overall increase in all the node voltages. The worst-performing 
node, 836, saw an increase of >15% in its p.u. voltage. While this was not a perfectly dynamic 
implementation, and the 836 node voltage was still low, it was as high as the system would allow 
without encountering a more than 5% overvoltage system.  

Additionally, the implementation of batteries reduced power losses in the system by 66% in this 
scenario. The increase in system efficiency combined with the ancillary benefits make this a good 
choice, though not necessarily a perfect one given the high cost of deployment, but it will still be 
cheaper than dealing with the present and future power quality costs. For this model, batteries are just 
another power injection, but in the real-world batteries would be charged during the night when 
power demand is low, during power curtailment, or by another distributed energy resource (DER) and 
then used during peak hours or when needed. 

Demand Response Solution 

In scenario 15, the high power losses and low node voltages are a direct result of the large EV 
loads drawing power at the same time. The problem is worse at night when PVs cannot contribute 
power. One solution is a demand response program that would coordinate EV charging so only a single 
EV load gets to charge at a time. Incentives would be given to EV owners to charge at a specific time of 
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the day, and assuming an elastic demand response1, electricity demand at any given time would be 
significantly reduced. 

This solution was modeled by switching on each of the 10 EV loads for one tenth of the total 
simulation time. See Appendix A1 for more details. This introduces some complexity into the analysis, 
there is no longer completely static loads throughout the simulation. There is now 10 discrete stages to 
assess power losses and node voltages at. In Figure A2, depending on which EV load is active, node 
voltages will still sometimes drop below 0.95 even though their average may now be in the acceptable 
±0.05 range. Adjusting the metrics to consider the temporal nature of the loads by looking at the 
number of nodes with voltage outside ±5% and power losses in a given time window provides: 

Time Window 1 2 3 4 5 6 7 8 9 10 
No. Of Nodes with 
Voltage outside +-
5% 

9 7 5 9 32 18 19 18 4 4 

Power Losses (kW) 229.0 235.4 243.9 357.4 513.2 566.3 518.0 552.8 282.3 302.1 

In all the time windows, the power losses have been drastically reduced, with a maximum of 
566.3 kW in time window 6 (when EV charging at bus 6 is active). While the majority of the low voltage 
nodes have been raised, there is still up to 32 low node voltages at a given time (window 5, bus 852 
with active EV charging), which is a downside but still much less severe than having 10 constant loads 
connected at once. 

Based on the implementation of the two solutions above, the best solution is the EV demand response 
program due to a larger reduction in power losses for this solution compared to the battery storage solution. 
Implementing large-scale battery storage results in power losses decreasing by 66% from those in the original 
worst-case scenario. However, after doing a few calculations, implementing a demand response program 
reduces power losses from 68% to 87% (from timing window 5 and timing window 1 respectively). Both 
solutions do an effective job of improving the power losses in the worst case, but objectively, the demand 
response program does a better job at this and is therefore the best solution based on metrics alone. 
(Although, realistically, demand response for EV charging would probably be harder to implement as many EV 
drivers might not be motivated by incentives). 
 
E. Equity and Justice 

The proposed metric for distributional justice is as follows: 

Percentage of EV Users Working from Home (EVWH): number of EV users who work from home in an 
area (Nh) over the total number of EV users in that area (Nu).  

 
1 In reality, wealthy EV owners may respond inelastically to electricity price changes. If this is the case, a more stronghanded direct 
load control program may be necessary. 
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EVWH = !!
!"
⋅ 100 

One distributional justice issue with EV demand response is the range of flexibility that people have 
with their jobs and when they can charge their EV. The demand response solution would incentivize people to 
charge their EVs at times of high solar irradiance and PV penetration; these times are generally in the middle 
of the day when many working individuals would be at work. Those who work from home or those who work 
at night would have an easier time charging at random times of day compared to someone who must be at 
their physical job the entire day.  

A metric that could be used to measure this distributional justice issue is to measure the number of EV 
users that work from home in an area and divide by the total number of EV users in that area or tract. This 
would give a percentage of how flexible EV users are in different areas, and therefore how likely they are to 
participate in the program. This is important because it is unfair if some users are unable to participate in the 
program or receive the incentive due to limits with their job, meaning the benefits of this program are not 
equally distributed among all users. To improve the energy justice of this solution, the demand response could 
be adjusted to not only incentivize charging during high solar irradiance, but also incentivize charging later at 
night, say between 10:00pm and 5:00am. This way those who work all day could still have the opportunity to 
participate and reap the benefits of the program, but at the same time our solution wouldn’t necessarily be 
ineffective by doing this as there is already less power loss and pressure on the grid in the middle of the night.  

The proposed metric/solution for recognition justice is the following: 

Social Sensibility to Power Consumption (S2PC): A quantity to measure social sensibility per household 
in user groups or regions consuming power.  

S2PC = " $ %
&''

⋅ 𝐻  
where E is the population percentage of people above 65 years old, C is the population percentage of 
people under 4 years old, and H is the region/tract household average size    

This metric shows that the higher the result of this formula, the higher the sensibility these regions or 
user groups from this tract have to power usage. In other words, this is trying to show how important power is 
for these people because of their living status. For example, if there is a power shortage in a region, the S2PC 
number assigned to this tract shows how severe this outage is to the people living in this region regardless of 
income or home ownership. This energy justice metric will help our battery storage solution from part D. 
Specifically, it will show utilities some strategic location points of where to add battery storage or another 
source of power, having in mind not just the technical issues such as undervoltage, but also social sensibility of 
different regions due to potential power shortages. However, some of highest population of sensible user 
groups (E and C) are on tracts 102 and 106, which is where the EV loads were added. Thus, if EV or any other 
large loads increase in these sensible regions it will help utilities prioritize these regions for future power 
developments (battery storage, demand response, etc.) due to technical and social vulnerability issues.  

Social metrics are challenging to create, since there are many variables that have to be taken into 
account. For instance, this metric does not care about household income or home ownership percentages, 
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which would be great when analyzing power outages due to the sensibility of these people to people no 
matter how much they earned. On the contrary, this metric might not help when people need to evacuate for 
weather or other extreme events. When there is an evacuation order, household income and home ownership 
will play a big role in the decision making of some of these people. Therefore, some recommendations to this 
metric would be to integrate household income and home ownership ratios somewhere in the equation to 
have more accurate results for sensibility of these user groups to different events. Also, this equation can be 
split into two different ones; one that just includes the elderly people (E) and another that just includes the 
children under the age of 4 (C) so utilities know the specific ratio of people they are working with. 
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Appendix 

A1. Staged EV Charging Modeling 

To coordinate EV charging, each EV load (a 3-phase load pictured here, 
although some are single phase), is put behind a switch (or a set of 
switches). The switches are turned on for 1/10th of the total simulation 
time—which is 0.5s for a 5s simulation—using a pulse generator that 
controls the set of switches, resulting in current through one specific EV 
load as shown in the plot below. 
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A2. Staged EV Charging Analysis 

 

 

Time Window 1 2 3 4 5 6 7 8 9 10 
Bus where EV 
charging is 
active 

862 838 856 890 852 854 830 828 840 836 

 


